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It has been more than 15 years since the identification of individual interleukin-27 (IL-27) and IL-27 receptor
components. The last decade has seen the description of the signaling pathways engaged by IL-27, and an
appreciation has emerged that this cytokine canmodulate the intensity and duration of many classes of T cell
responses. Here we provide an overview of the immunobiology of IL-27 and review advances in under-
standing the functions of individual IL-27 and IL-27 receptor subunits and the role of IL-27 in dictating the
balance between protective and pathological immunity. Additionally, this cytokine has been proposed as
a therapy tomodify inflammatory conditions or to promote antitumor responses, and situations where exper-
imental and clinical data sets implicate IL-27 in the outcome of disease are highlighted.
Introduction
Interleukin-27 (IL-27) is a heterodimeric cytokine composed of

the Epstein-Barr virus-induced gene 3 (EBi3) and IL-27p28,

which engages a receptor composed of gp130 and the IL-

27Ra that activates Janus kinase (JAK)-signal transducer and

activator of transcription (STAT) and mitogen activated protein

kinase (MAPK) signaling (see Figure 1; Kastelein et al., 2007).

Although the Ebi3 subunit and IL-27Ra chain were first described

in 1996 and 1998, respectively, it was not until 2001 that a combi-

nation of in silico and biochemical approaches provided themain

framework for understanding how IL-27 functioned and not until

2004 that the full receptor composition was described (Pflanz

et al., 2002, 2004). There are a number of structural motifs that

characterize the IL-27 receptor and subunits that highlight its

evolutionary relationship with IL-6, IL-12, and IL-23 and which

help explain their use of similar signaling pathways and overlap-

ping activities (Kastelein et al., 2007). These latter cytokines have

emerged as critical determinants in the development of T helper

1 (Th1) and Th17 cell responses and represent major targets for

drug development to manage inflammatory conditions associ-

ated with aberrant T cell responses. Because IL-27 is a member

of this family and utilizes JAK-STAT signaling associated with

T cell activation, when this cytokine was first described there

was an expectation that it would be proinflammatory. This notion

was reinforced by reports on mice that lacked the IL-27Ra and

in vitro studies that emphasized the ability of IL-27 to promote

NK and T cell proliferation and production of IFN-g (Chen

et al., 2000; Pflanz et al., 2002; Yoshida et al., 2001). However,

when Il27ra�/� mice were challenged with a number of patho-

gens or utilized in a variety of autoimmune models, the data

sets that emerged suggested that one of the main functions of

IL-27 in these settings was to limit the intensity and duration of

T cell responses (Artis et al., 2004a, 2004b; Batten et al., 2006;

Hamano et al., 2003; Hölscher et al., 2005; Miyazaki et al.,

2005; Stumhofer et al., 2006; Villarino et al., 2003). Since then,

multiple studies have addressed the basis for the inhibitory

effects of IL-27 on Th1, Th2, and Th17 cell responses and high-
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lighted the many mechanisms engaged by this cytokine (see

Figure 2). This includes the ability to antagonize T cell production

of IL-2, a direct inhibitory effect on Th2 and Th17 cell activities,

and the fact that IL-27 is a major stimulus for T cell production

of IL-10. There is now an acceptance that IL-27 can limit many

facets of T cell-mediated pathology but also research indicating

that it can promote Th1 cell type responses (Cao et al., 2008;

Mayer et al., 2008). Nevertheless, ongoing studies continue to

identify novel suppressive functions of IL-27 and there has

been progress in translating the basic findings from murine

models into clinical settings. Here we highlight recent advances,

frame newer questions that have arisen about this cytokine, and

provide an overview of the current knowledge of the immunobi-

ology of IL-27 that may inform the development of therapies to

limit or enhance immune responses.

Promiscuity of IL-27 and IL-27 Receptor Subunits
Interleukin-12 remains the prototypic heterodimeric cytokine

and the association of the IL-12p35 and IL-12p40 subunits is

dependent on disulphide interactions. In contrast, the nature of

the association between IL-27p28 and EBi3 is uncertain and

these subunits can be secreted independently and are differen-

tially expressed in various cell types (Pflanz et al., 2002). These

observations imply that IL-27p28 and EBi3 might associate

with other factors to form novel cytokines or have biological

functions of their own. Evidence also exists indicating that

EBi3 can partner with IL-12p35 to form IL-35, which has been

linked to the activities of regulatory T cells, and the biology of

this cytokine is reviewed in detail elsewhere (Vignali and Kuch-

roo, 2012). Similarly, the IL-27p28 subunit can bind to cyto-

kine-like factor 1 (CLF), and this heterodimer promotes T and

NK cell production of cytokines (Crabé et al., 2009). This inherent

combinatorial biology lends itself to the generation of designer

cytokines and although there is currently no evidence that

IL-27p28 and IL-12p40 can combine naturally, this recombinant

hematopoetin can suppress inflammation in a model of experi-

mental autoimmune uveitis (EAU) associated with the inhibition
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Figure 1. Impact of IL-27 on Lymphocyte Signaling Pathways
Dimerization of gp130 and IL-27Ra engages JAK1, JAK2, and Tyk2 that
engage the MAPK pathway and activation of multiple STATs, most notably
STAT1 and STAT3. The activation of STAT1 is linked to inhibition of GATA-3
and RoRgt but upregulation of PD-L1, T-bet, and IL-10. The ability to engage
STAT3 is linked to increased proliferation as well as IL-10 whereas the MAPK
pathway intersects with AHR to promote IL-10 and IL-21.
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of Th1 and Th17 cell responses and expansion of Treg cells

(Wang et al., 2012). The initial observation that IL-27p28 alone

had a modest ability to antagonize Th17 cell responses

(Stumhofer et al., 2006) foreshadowed reports that overexpres-

sion of IL-27p28 can have quite profound biological effects.

The generation of a variant of IL-27, in which the IL-27p28

subunit could not interact with gp130, revealed that this mutant

acted as a receptor antagonist and limited liver damage medi-

ated by Th1 cells (Rousseau et al., 2010). Indeed, IL-27p28 can

be secreted independently of EBi3 and, consistent with struc-

tural predictions that IL-27p28 would bind to the type I domain

of gp130, this subunit can block the activity of cytokines (IL-6,

IL-11, and IL-27) that utilize this portion of gp130 to signal (Pflanz

et al., 2004; Stumhofer et al., 2010). The physiological relevance

of these observations was illustrated by the finding that overex-

pression of IL-27p28 antagonizes gp130-dependent B cell

responses (Stumhofer et al., 2010), can block liver damage (Di-

bra et al., 2012), abrogates antitumor responses and suppresses

graft rejection (Shimozato et al., 2009), and blocks EAU (Wang

et al., 2012). Together, these results have led to the idea that

IL-27p28 can act as a naturally occurring low-affinity antagonist

of signaling through the gp130 receptor that is reminiscent of

mechanisms that limit IL-1 activity (Stumhofer et al., 2010).

Although initial studies that utilized overexpression approaches

were key to identifying the pairing of IL-27p28 and EBi3, a major

knowledge gap remains in understanding the factors that govern

whether IL-27p28 is secreted alone or as a heterodimer, how

these components dimerize, and whether there are differences

between murine and human cells. Based largely on the overex-

pression data in HEK293T cells, the current paradigm has human

EBi3 secreted in excess, whereas human IL-27p28 can be
secreted only when coexpressed with EBi3 (Pflanz et al.,

2002). In the mouse, the opposite is true: IL-27p28 is secreted

in excess whereas EBi3 can be secreted only when coexpressed

with IL-27p28 (Pflanz et al., 2002). It is pertinent to acknowledge

the current limitations with the commercial reagents to reliably

measure the IL-27 heterodimer in human and mouse systems

and to distinguish IL-27p28 alone or as part of IL-27. This

becomes important if there are efforts to develop IL-27p28 clin-

ically and there needs to be caution in extrapolating the functions

of IL-27p28 in mice to the human situation.

Given the close relationship between IL-6, IL-12, and IL-27,

the advanced state of knowledge of how IL-6 and IL-12 interact

with their receptor components has informed many aspects of

IL-27 signaling. Thus, the observation that the gp130 subunit is

utilized by a group of related cytokines, including IL-6 and

IL-27, whereas IL-12Rb1 is employed by IL-12 and IL-23, raises

questions about whether the IL-27Ra chain can function as

a receptor for other cytokines. Indeed, IL-27Ra is a component

of the receptor (that includes gp130 and IL-6Ra) for the p28-

CLF heterodimer (Crabé et al., 2009), and the neuroprotective

peptide Humanin also utilizes IL-27Ra (Hashimoto et al., 2009).

There is also evidence that IL-27Ra can form homodimers that

activate the JAK-STAT pathway that can promote transforma-

tion of hematopetic cells (Pradhan et al., 2007). One additional

facet of IL-6 biology that is relevant to IL-27 is the ability of

IL-6 to pair with soluble IL-6Ra. This IL-6-IL-6Ra complex is

able to bind to gp130 alone and transduce signaling in a process

known as trans signaling (Rose-John et al., 2006). This process is

thought to underlie the evolution of IL-27 because EBi3, which is

analogous to the soluble IL-6Ra receptor, binds to IL-27p28,

which is structurally similar to IL-6. At this point, there is no

evidence that IL-27 employs trans signaling, but if IL-27 can be

engineered to take advantage of this type of biology, it would

profoundly alter current perspectives on the cell types that can

be targeted by IL-27. Additional structure-function studies would

be required to inform the development of altered versions of IL-

27 that could act as receptor agonists or antagonists. Regard-

less, the increased understanding of the use and reuse of the

IL-27 cytokine and receptor components has already compli-

cated the interpretation of studies with Ebi3�/� and Il27ra�/�

animals, and the physiological significance of other complexes

that contain elements of the IL-27-IL-27R cassette requires

further study.

lL-27 Regulating Regulatory Pathways
Although the IL-27Ra chain and IL-27 were initially linked to the

development of Th1 cell responses, there was a gradual transi-

tion to the recognition that this factor acts as a suppressor of

many T cell subsets (Kastelein et al., 2007). With that realization,

understanding how IL-27 could dampenmultiple types of inflam-

mation became a major question (see Figure 2) and the ability of

IL-27 to antagonize the production of IL-2 may help to explain

some of its broad suppressive effects (Villarino et al., 2006).

With the identification of ‘‘master regulators’’ of T helper cell

subsets, the observation that IL-27 reduced basal GATA3

expression provided an insight into the mechanism used to limit

Th2 cell development (Lucas et al., 2003). Data that IL-27

blocked expression of RoRgt explains the antagonistic effects

of IL-27 on the production of IL-17 (Diveu et al., 2009). Given
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Figure 2. Key Regulatory Effects of IL-27 on T and B Cells
The proinflammatory properties attributed to IL-27 include the development of CTL, the promotion of Tfh cells, and a direct ability to promote B cell production of
antibodies. The regulatory activities of IL-27 include the ability to promote expression of the inhibitory receptor PD-L1 and IL-10 production by multiple helper
T cells. The ability to generate a CXCR3+ Treg cell population is specialized to operate at sites of Th1 cell inflammation whereas the ability to control Th2 and Th17
cell inflammation is due to direct inhibitory effects on GATA3 and RoRgt.
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the ability of IL-27 to activate STAT1 and T-bet (Takeda et al.,

2003), a transcriptional response associated with Th1 cell

activity, the molecular and cellular basis for the enhanced Th1

cell responses observed in the absence of IL-27 in vivo has

been more difficult to comprehend. Nevertheless, advances

have been made over the last 5 years that described the ability

of IL-27 to promote a series of regulatory pathways that appear

secondary to Th1 cell development andwhich prevent protective

responses from becoming pathological.

IL-27 and the Production of IL-10
The primary studies that showed that IL-27Ra-deficient mice in-

fected with intracellular parasites developed a lethal inflamma-

tory response mediated by CD4+ T cells was reminiscent of

work demonstrating that Il10�/� mice challenged with the

same organisms developed similar immune pathology (Gazzi-

nelli et al., 1996; Hamano et al., 2003; Hunter et al., 1997; Villarino

et al., 2003). However, in the Il27ra�/� mice, global defects in

IL-10 production during the acute phase of these infections

were not readily apparent, and these mice do not develop spon-

taneous colitis or display overt susceptibility to cancer, charac-

teristic of the absence of IL-10 (Berg et al., 1996). These initial

reports were interpreted as showing that IL-10 and IL-27 acted

in distinct fashions and were consistent with a paradigm that

IL-10 mediates its suppressive activities largely through its

effects on accessory cell function whereas IL-27 could directly

inhibit T cells. However, in 2007, a series of studies highlighted

that Th1, Th2, Th17, and Tr1 cell subsets could be activated by

IL-27 to promote the production of IL-10 in the context of infec-

tious and autoimmune conditions and provided an unprece-

dented insight into the heterogeneity that can be apparent

even within T cell responses that are defined by current T helper

cell subset nomenclature (Awasthi et al., 2007; Fitzgerald et al.,

2007b; Stumhofer et al., 2007). This phenomenon has been

confirmed in a variety of other experimental models and

expanded to humans (Anderson et al., 2009; Ansari et al.,

2011; Batten et al., 2008; Freitas do Rosário et al., 2012; Muru-

gaiyan et al., 2009; Perona-Wright et al., 2012; Sun et al.,

2011; Wang et al., 2011). Whereas initial reports defining

the molecular basis for these events identified the involvement

of STAT1 and STAT3 signaling (Stumhofer et al., 2007) and of
962 Immunity 37, December 14, 2012 ª2012 Elsevier Inc.
the inducible costimulator (ICOS) (Pot et al., 2009), the complex

molecular events that underpin IL-10 production in T cells are

still emerging (see Figure 1). For example, the ability of IL-27

to activate MAPK signaling and to induce expression of the

AP-1 transcription factor promotes production of IL-21 that

sustains IL-10 expression (Pot et al., 2009; Xu et al., 2009).

Furthermore, the aryl hydrocarbon receptor and its ability to

partner with c-Maf to optimize interactions with the Il10 and

Il21 promoters has been implicated in these events (Apetoh

et al., 2010). Much of this more recent work has been framed

in the context of Tr1 cells, but because IL-10 can be produced

by all T cell subsets, it seems likely that these principles for the

control of IL-10 will be broadly relevant. However, it should be

noted that whereas IL-27 promotes the production of IL-10 by

effector CD8+ T cells during viral infections, memory CD8+ cells

lose expression of gp130 and are nonresponsive to IL-27 (Per-

ona-Wright et al., 2012). It has been proposed that this allows

these memory populations to provide better secondary

responses and illustrates a mechanism to limit the inhibitory

effects of IL-27.

IL-27 and PD-L1
IL-27’s promotion of IL-10 is one mechanism to limit inflamma-

tory responses, but there are regulatory networks mediated by

other cytokines and receptor-ligand interactions that limit

different facets of an immune response. The PD-1-PD-L1 inter-

action has emerged as a major mediator of exhaustion in

T cells, most prominently in the setting of chronic viral infections

and cancer (Barber et al., 2006; Topalian et al., 2012), and so

studies in which microarray analysis of CD4+ T cells identified

PD-L1 as a target of IL-27 provide an important link between

two apparently distinct regulatory mechanisms. There are

reports in which IL-27 was shown to inhibit the development of

Th17 cells but had less of an effect on established responses

(El-behi et al., 2009), but the ability of IL-27 to promote PD-L1

by CD4+ T cells allows these cells to act in trans to limit Th17

cell responses and ameliorate the development of EAE, thus

providing another strategy for IL-27 to indirectly limit inflamma-

tion mediated by Th17 cells (Hirahara et al., 2012). Given the

prominent role of PD-1-PD-L1 in viral infections and T cell

exhaustion, these studies also highlight the gap in our
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knowledge of the role of IL-27 in the regulation of antiviral immu-

nity and provide the impetus to determine whether this cytokine

is involved in coordinating the expression of other inhibitory

pathways associated with exhaustion.

IL-27 and Treg Cells
A major paradox for the last 5 years has been the disparate find-

ings on IL-27: that it can limit inflammation and that it antago-

nizes Treg cell development or conversion, a major arm of the

immune system devoted to operational tolerance. Several

groups have observed that IL-27 antagonizes the ability of

TGF-b and IL-2 to generate inducible Treg cells (Huber et al.,

2008;Neufert et al., 2007; Stumhofer et al., 2007) and in a transfer

model of colitis, the absence of the IL-27Ra led to increased

conversion of Treg cells and this population ameliorated disease

more efficiently than did wild-type cells (Cox et al., 2010). More-

over, mice transgenically overexpressing IL-27 lack Treg cell

populations and develop an autoimmune disease analogous to

the scurfy disease present in mice that lack Foxp3 (Wojno

et al., 2011). Taken together, these findings would be interpreted

as showing that IL-27 negatively impacts Treg cell homeostasis.

However, in the transgenic model, the loss of Treg cells appears

to be secondary to the ability of IL-27 to limit the production of

IL-2, which is required to maintain Treg cell populations. More-

over, Il27ra�/� mice have normal Treg cell frequencies; IL-27

does not downregulate Foxp3 expression nor does it antagonize

the ability of Treg cells to function in suppression assays (Cox

et al., 2010; Villarino et al., 2005); and more recent studies

have found that IL-27 promotes Treg cell growth and survival

(Hall et al., 2012).

These contradictory reports on effects of IL-27 on Treg cells

stress that the heightened production of IL-2 observed in the

absence of IL-27 signaling can complicate the interpretation of

these studies. An alternative view on the interaction of IL-27

and Treg cells began to emerge with reports in 2009 that during

Th1 cell responses to the intracellular pathogens Mycobacteria

or Toxoplasma gondii, a population of T-bet+ Treg cells emerged

that could also produce IFN-g (Koch et al., 2009; Oldenhove

et al., 2009). During mycobacterial challenge, the development

of this population was dependent on Treg cell expression of

STAT1 that induced T-bet-mediated expression of CXCR3

(Koch et al., 2009). The model that emerged from these latter

studies was that this Th1 cell-like subset of Treg cells developed

in response to IFN-g signals and was specialized to control Th1

cell responses. A role for IL-27 in these events was established

when it was shown that IL-27 can engage this same STAT1-T-

bet transcriptional pathway in Treg cells and that after challenge

with T. gondii, L. major, or Salmonella, IL-27 is required for the

emergence of a T-bet+CXCR3+ Treg cell population at local sites

of inflammation, which produce IL-10 and suppress parasite-

specific effector response (Hall et al., 2012). This led to amodified

model in which the production of IFN-g and IL-27 in distinct

anatomical locations can drive subpopulations of Treg cells to

express CXCR3, which allows these populations to operate at

distinct sites of Th1 cell inflammation. These findings raise new

questions about the precise impact of CXCR3 on Treg cell func-

tion and, when combined with reports that IL-27 upregulates

cellular expression of LFA-1, ICAM-1, and sphingosine 1 phos-

phate (Liao et al., 2007; Owaki et al., 2006), suggest the need
for additional studies to understand the impact of IL-27 on traf-

ficking and behavior of different lymphocytes.

Translating Models to Clinical Disease
With data sets emerging that IL-27 suppresses human Th17 cell

responses and promotes the production of IL-10 (Amadi-Obi

et al., 2007; Apetoh et al., 2010; Murugaiyan et al., 2009), several

groups have already proposed that these properties of IL-27may

be useful therapeutically and there are multiple proof-of-prin-

ciple studies in murine models that support this idea. The oppor-

tunity to apply this information to human disease is invariably

complicated by data sets in which the pro- and anti-inflamma-

tory properties of IL-27 are debated and by questions about

how to interpret aberrant IL-27 levels in different disease states.

IL-27 and Infectious Disease
Parasitic organisms have provided some of the strongest pheno-

types for IL-27 in murine systems; there are now reports in which

IL-27 is linked to the outcome of these infections in humans. For

example, Il27ra�/� mice challenged with visceral leishmaniasis

develop enhanced immune pathology (Rosas et al., 2006) and

in patients with visceral disease, serum titers of IL-27 are

elevated and have been linked to the production of IL-10 that

may provide a feedback loop that limits inflammation but allows

parasite persistence (Ansari et al., 2011). In different murine

models of malaria, endogenous IL-27 promotes IL-10, limits

T cell responses, and prevents immune pathology (Findlay

et al., 2010; Freitas do Rosário et al., 2012). In the human setting,

those patients with the most severe clinical malaria have

reduced amounts of IL-27, consistent with the elevated inflam-

matory responses (Ayimba et al., 2011). In contrast, very little

is known about the impact of IL-27 onmodels of fungal infection.

However, in elegant bedside-to-bench studies, Casanova and

colleagues characterized a group of patients with gain-of-func-

tion mutations in STAT1 that were susceptible to mucocuta-

neous candidiasis (Liu et al., 2011). Because IL-17F and

IL-17RA are required for resistance to Candida, one explanation

for this increased susceptibility of these patients is provided by

the enhanced ability of IL-27 and type I IFNs to activate STAT1

and to suppress Th17 cell responses in these patients (Liu

et al., 2011). These results suggest that reduced production of

IL-27 may improve control of fungal organisms, whereas exces-

sive IL-27 activity would promote susceptibility, an idea that has

yet to be tested in murine systems.

IL-27 and Cancer
IL-27 can also act as a potent stimulus for lymphocyte expansion

and survival and there are reports that address the impact of IL-

27 on hematopoesis (Seita et al., 2008) and proliferation (Charlot-

Rabiega et al., 2011). As for many growth factors, IL-27 has also

been linked to tumor progression, and in human patients with

acute myeloid leukemia (AML), the ability of the IL-27Ra to

dimerize has been linked to transformation (Pradhan et al.,

2007). However, IL-27 can have a direct inhibitory effect on

tumor cells, even in the context of AML (Ho et al., 2009; Zorzoli

et al., 2012). Thus, the role of IL-27Ra in cancer biology is

complex, with a well-developed literature that implicates IL-27

in the regulation of antitumor immunity mediated by CD8+

T cells (Chiyo et al., 2005; Hisada et al., 2004; Salcedo et al.,
Immunity 37, December 14, 2012 ª2012 Elsevier Inc. 963
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2004, 2009). Consistent with the ability of IL-27 to activate a tran-

scriptional response reminiscent of Th1 cells, the ectopic

expression of IL-27 promoted antitumor cytotoxic T lymphocyte

(CTL) responses in mice associated with increased proliferation,

expression of T-bet and IL-12Rb2, and production of IFN-g (Sal-

cedo et al., 2009). In that context, there is an increasing appreci-

ation of the role of the PD-1-PD-L1 interaction in cancer and the

observation that IL-27 induces PD-L1 (Hirahara et al., 2012)

implies that IL-27 may be an important molecule in controlling

immune checkpoint mechanisms that operate in cancer. The

IL-27Ra chain is also expressed by epithelial tumor lines (Dibra

et al., 2009) where IL-27 has been linked to promoting expres-

sion of MHC class I-related chain A (MICA), a ligand for

NKG2D, which is an activating receptor expressed on NK and

some CD8+ T cells, that promotes cytotoxicity (Dibra et al.,

2009). Taken together, these findings make it difficult to interpret

how a polymorphism in IL-27p28 that is associated with colo-

rectal cancer (Huang et al., 2012) can impact tumor formation

or surveillance. Given the contributory role of inflammation to

the development of cancer, and in particular the links to the IL-

23-Th17 cell axis (Langowski et al., 2006), it seems likely that

IL-27 would have some impact on the immunological processes

that contribute to these events, but there is a paucity of studies

that address the impact of endogenous IL-27 on tumorogenesis.

IL-27 at Barrier Surfaces: Colitis, Asthma, and Psoriasis
Maladaptive Th2 and Th17 cell inflammatory responses are

characteristic of several diseases (including asthma, colitis,

and psoriasis) that affect barrier sites. These are spectral condi-

tions and grouping them together represents a gross simplifica-

tion that ignores their complex relationship to conditions like

lupus, ankylosing spondylitis, and arthritis. In the setting of

human psoriasis, IL-27 has been associated with promoting

disease (Kanda and Watanabe, 2008; Shibata et al., 2010,

2012), although studies that link IL-27 to keratinocyte and intes-

tinal epithelial cell biology may alter how we view IL-27 acting at

this local barrier site (Diegelmann et al., 2011; Kanda and Wata-

nabe, 2008). Nevertheless, IL-27 represents an attractive candi-

date for a therapeutic approach to manage some of these

diseases. In murine models of asthma, the absence of the IL-

27Ra results in exacerbated lung pathology, characterized by

goblet cell hyperplasia, infiltration of eosinophils, elevated serum

IgE titers, and airway hyperresponsiveness (Miyazaki et al.,

2005; Yoshimoto et al., 2007). Similarly, IL-27Ra-deficient mice

treated with a high dose of DSS develop more severe colitis

associated with elevated Th17 cell activity (Troy et al., 2009),

and in a TNBS model of acute colitis, treatment with IL-27 can

ameliorate disease (Sasaoka et al., 2011). However, there is

a paradox that when low doses of DSS have been used to induce

colitis, IL-27 is thought to contribute to the development of

disease (Honda et al., 2005). An alternative way to consider

some of these findings is that the production of IL-17 is not solely

pathogenic and has a role in promoting barrier function and

limiting tissue damage (Esplugues et al., 2011; Kinugasa et al.,

2000; O’Connor et al., 2009; Ogawa et al., 2004). Indeed, at

low doses of DSS, IL-17 plays a role in protecting from disease

(Ogawa et al., 2004) and in this type of situation the well-charac-

terized ability of IL-27 to antagonize IL-17 production could

explain its proinflammatory activities.
964 Immunity 37, December 14, 2012 ª2012 Elsevier Inc.
Recognizing that the interpretation of the biological properties

of IL-27 will be context dependent, a series of studies have

emerged in the last 5 years that have highlighted polymorphisms

in IL-27p28 that are connected with these conditions in humans.

One of the first SNPs identified in IL-27p28 that was associated

with disease was linked with susceptibility to asthma and

increased IgE and eosinophilia (Chae et al., 2007) and similar

linkages are reported for polymorphisms in IL-27p28 in chronic

obstructive pulmonary disease (COPD) and IBD (Huang et al.,

2008; Li et al., 2009). Perhaps the most comprehensive study

surveyed a pediatric cohort, utilizing genome-wide association

studies and high-density SNP analysis, and identified IL-27p28

as a candidate gene for Crohn’s disease susceptibility (Imielinski

et al., 2009). Data were presented that suggested that this was

a consequence of reduced IL-27 production and was consistent

with the idea that IL-27 (or IL-27p28)may play a role in preventing

disease. These are all intriguing studies and suggest that

IL-27p28 may be useful as a biomarker or (in a select group of

patients) may be useful as a therapy, analogous to the use of

the IL-1 receptor antagonist.

IL-27 and Multiple Sclerosis
In murine models of MS, early studies showed that treatment

with IL-27 could delay the onset of experimental allergic ence-

phalmyelitis (EAE) and ameliorate established CNS disease,

and in certain models of EAE, the absence of the IL-27Ra results

in more severe disease (Batten et al., 2006; Fitzgerald et al.,

2007a, 2007b). Since then, a series of studies have provided

a link between type I IFNs and IL-27 that may be clinically rele-

vant. The first suggestion that these two cytokines were linked

in MS was the realization that type I IFNs, which are used to treat

MS, were potent inducers of IL-27 (Molle et al., 2007; Pirhonen

et al., 2007). Studies from different groups then linked the ability

of type I interferons to block disease in EAE to their ability to

promote IL-27 (Guo et al., 2008; Shinohara et al., 2008). A clinical

correlate of this finding was provided by a report that in patients

with MS, the ability to produce IL-27 in response to type I inter-

ferons predicts the efficacy of interferon therapy (Sweeney

et al., 2011). Together, these findings suggest that the clinical

efficacy of IFN-b in patients with MS may be attributed to its

ability to induce IL-27 (or the IL-27p28 monomer) and it has

been proposed that IL-27 may represent an alternative strategy

to manage this condition.

IL-27 and the Regulation of Humoral Responses in
Arthritis and Lupus
Systemic lupus erythematosus (SLE) and arthritis are complex

spectral diseases associated with the development of autoanti-

bodies that include pathognomonic levels of anti-dsDNA and

rheumatoid factor, respectively. In the clinical setting, increased

levels of IL-27 have been observed in the synovial fluid of

rheumatoid arthritis patients, which correlates with reduced

local levels of IL-17 and IL-6, consistent with the inhibitory

properties of IL-27 (Niedbala et al., 2008; Tanida et al., 2011).

There are a plethora of models that reflect different facets of

these clinical entities, and some of the earliest studies that

showed that treatment with IL-27 can attenuate disease were

performed in collagen-induced arthritis (Niedbala et al., 2008;

Pickens et al., 2011). In contrast, during proteogylcan-induced
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arthritis, endogenous IL-27 appears to promote disease (Cao

et al., 2008).

In MRL/lpr mice, which exhibit a spontaneous disease similar

to SLE, overexpression of the IL-27Ra results in decreased titers

of self-reactive antibody and reduced skin disease (Kido et al.,

2011; Sugiyama et al., 2008), probably a consequence of

increased IL-27 signals. Further support for the idea that IL-27

affects autoantibody responses is found in studies in which dele-

tion of EBi3 in MRL/lpr mice resulted in increased titers of auto-

antibodies but surprisingly improved disease scores (Igawa

et al., 2009). The report that there is a strong inverse correlation

between serum amounts of IL-27 and active disease in SLE

patients (Li et al., 2010) has led to speculation that reduced

IL-27 in some lupus patients can allow for the emergence of

pathological T and B cell responses. One paradox with these

findings is that SLE is associated with high amounts of type I

interferons, which are known to promote IL-27 (Pirhonen et al.,

2007; Remoli et al., 2007; Sweeney et al., 2011). Thus, it is

unclear why lupus patients exhibit lower amounts of IL-27 (Li

et al., 2010). Of course, the inherent heterogeneity that is

apparent in this disease setting may mask direct associations

between relative levels of IL-27 and the type I IFNs.

Given the critical role of antibodies in these disease states,

there has been a focus on understanding the contribution of

Tfh cells to the development of autoantibody responses and

IL-17 has been linked to these events (Doreau et al., 2009).

The effects of IL-27 in this area have been understudied, but

IL-27 can activate c-Maf signaling and upregulate IL-21 and

these events are considered critical for Tfh cell responses

(Bauquet et al., 2009; Nurieva et al., 2008; Pot et al., 2009).

Indeed, culturing CD4+ T cells with IL-27 led to production

IL-21, and vaccination of Il27ra�/� mice revealed that they had

impaired IL-21 levels, decreased numbers of Tfh cells, and

reduced production of high-affinity class-switched antibody

(Batten et al., 2010). It should be noted that IL-27 signaling

is not required for the generation of antibody responses in

models of infection, allergy, and autoimmunity (Artis et al.,

2004a; Miyazaki et al., 2005; Shimizu et al., 2005; Yoshida

et al., 2001) and that IL-27 also has direct stimulatory effects

on human B cells (Larousserie et al., 2006; Yoshimoto et al.,

2004) and can directly inhibit the growth of leukemic B cells

(Canale et al., 2011). Understanding the context of when IL-27

promotes or limits humoral responses remains an important

area of investigation.

Concluding Remarks and Future Directions
One of the challenges that the field now faces is to determine

whether manipulation of IL-27 could be used therapeutically to

modulate inflammation that occurs during various human

disease states. The difficulty in this area is making decisions

about which diseases to target and the type of intervention

that would be most appropriate. This could be in a direct fashion

by using agonists of the IL-27R or by an indirect strategy, as sug-

gested by studies showing that the ability of probiotic bacteria to

induce IL-10, which can ameliorate experimental colitis, is

dependent on IL-27 (Jeon et al., 2012). There may also be situa-

tions where the blockade of IL-27 would prove beneficial, and

appreciating how the role of IL-27 is likely to vary depending

on the underlying disease cause will be important. Many of the
human studies described above are informative in thinking about

how the immunobiology of IL-27 may be translated, but ques-

tions remain about how individual polymorphisms might impact

the expression patterns of IL-27. Intriguingly, all of the polymor-

phisms reported to date have been associated with IL-27p28

and it is unclear whether this represents effects on the cytokine

IL-27 and/or the ability of the IL-27p28 subunit to act as a

receptor antagonist. Regardless, clinical studies have emerged,

such as those with patients that express gain-of-function

mutations of STAT1, that highlight the ability of IL-27 to suppress

Th17 cells in humans (Liu et al., 2011). Another area in which

further insights into the significance of IL-27 in humans may be

gained are the clinical trials that target the Janus kinases

(JAK), which mediate the effects of IL-6, IL-12, and IL-23.

Currently, JAK inhibitors that have been designed to target

inflammatory pathways mediated by these latter cytokines are

in clinical trials for arthritis and lupus. These inhibitors should

also affect the JAKS utilized by IL-27 (as well as IL-10 and type

I IFNs), and it is possible that treatment with these compounds

may lead to dysregulation of the natural regulatory networks

that limit inflammation. A lack of adverse inflammatory events

would suggest that the endogenous regulatory pathways

provided by IL-27 represent secondary responses to ongoing

inflammation rather than mechanisms that continuously enforce

operational tolerance.

The prior 10 years have seen an evolution of our understanding

of IL-27: from acting as a driver of Th1 cell responses, to the

broad inhibitory effects of IL-27, to a realization that this is

a factor that engages multiple lymphocyte populations to partic-

ipate in a program of diverse regulatory mechanisms that are

responsible for returning the immune response to homeostasis.

From a signaling perspective, the growing appreciation of the

distinct biological properties of IL-6, IL-12, IL-23, and IL-27 rai-

ses basic questions about how similar downstream signals are

integrated to provide functionally disparate transcriptional

programs. This is a question relevant to many biological systems

and the fact that IL-6 and IL-27 both prominently activate STAT1

and STAT3 but have profoundly different effects on Th17 and

Treg cells provides a system to dissect how apparently similar

signals provide distinct functions. The more recent studies that

have linked IL-27 to the production of IL-10, the activation

of Treg cells, and expression of PD-L1 highlight our lack of

knowledge about how the suppressive activities of IL-27 are

coordinated. These pathways may be redundant, may act inde-

pendently, or may represent complementary cassettes that are

coordinated in a parallel or linear fashion. Understanding the

underlying biology of IL-27 can provide a template to understand

how the immune system approaches the problem of tempering

appropriate and aberrant responses.
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